Les phases $SrLnMnO_4$ (Ln = La, Nd, Sm, Gd), $BaLnMnO_4$ (Ln = La, Nd) et $M_{1+x}La_{1-x}MnO_4$ (M = Sr, Ba)

A. BENABAD ET A. DAOUDI

Laboratoire de Chimie Minérale, Faculté des Sciences de l'Université Mohammed V, Avenue Moulay Chérif, Rabat, Maroc

ET R. SALMON ET G. LE FLEM

Laboratoire de Chimie du Solide du C.N.R.S., Université de Bordeaux I, 351 cours de la Libération, 33405 Talence, Cedex, France

Received January 24, 1977

The phases $SrLnMnO_4$ (Ln = La, Nd, Sm, Gd), $BaLnMnO_4$ (Ln = La, Nd) and the solid solutions $M_{1+x} La_{1-x} MnO_4$ ($M = Sr: 0 \le x \le 1; M = Ba: 0 \le x \le 0.50$) have a K_2NiF_4 -type structure. The c/a ratio of the unit cell is related to the electronic configuration of the Mn^{3+} ions.

Les phases perovskite de formule générale $M_x \text{La}_{1-x} \text{MnO}_3$ (M = Ca, Sr, Ba) ont fait l'objet de très nombreuses recherches que justifiait la présence simultanée du manganèse aux degrés d'oxydation +III et +IV dans le sous-réseau des sites octaédriques. La grande variété des structures magnétiques observées a permis d'analyser de manière approfondie les divers types de couplage par superéchange mis en jeu dans les interactions manganèse-oxygène-manganèse (1-6).

L'intérêt porté par les théoriciens aux phénomènes de dimensionalité dans les interactions magnétiques nous a conduit à entreprendre une étude parallèle sur des phases oxygénées comportant également des ions manganèse aux degrés d'oxydation +III et +IV, mais appartenant au type structural bidimensionnel K_2NiF_4 .

Nous avons montré antérieurement que la structure K_2NiF_4 se conserve tout en comportant parfois une légère distorsion monoclinique lorsqu'intervient dans Ca_2MnO_4 la substitution couplée: $Ca^{2+} + Mn^{4+} = Mn^{3+} + Ln^{3+} (Ln = Y, Pr, Nd, Sm, Eu, Gd) (7, 8).$

décrirons ici la préparation et les propriétés radiocristallographiques des phases $SrLnMnO_4$ (Ln = La, Nd, Sm, Gd), $BaLnMnO_4$ (Ln = La, Nd) et des solutions solides intermédiaires $M_{1+x}La_{1-x}MnO_4$ (M =Sr, Ba). Le choix de ces dernières phases se justifiait compte tenu du caractère diamagnétique de l'ion La^{3+} . Parmi tous ces composés seuls $SrLaMnO_4$ et $Sr_{1.5}La_{0.5}MnO_4$, avaient été signalés antérieurement (9–11).

C'est dans cette perspective que nous

Préparation

Les phases $SrLnMnO_4$ et $BaLnMnO_4$ sont obtenues en calcinant des mélanges d'oxydes Ln_2O_3 et Mn_2O_3 en présence de carbonate alcalino-terreux en léger excès.

La réaction

$$2MCO_3 + Ln_2O_3 + Mn_2O_3 \rightarrow 2MLnMnO_4 + 2CO_2^{\checkmark}$$
$$(M = Sr, Ba)$$

est totale après deux traitements thermiques à 1450°C effectués sous courant d'argon U mélangé à 2% d'hydrogène.

Les solutions solides $M_{1+x}La_{1-x}MnO_4$ (M =Sr, Ba) sont obtenues en calcinant des mélanges d'oxyde La_2O_3 , Mn_2O_3 et des carbonates alcalino-terreux en léger excès par rapport aux proportions stoechiométriques.

La réaction

$$4(1 + x)MCO_3 + 2(1 - x)La_2O_3 + 2Mn_2O_3 + xO_2$$

$$\rightarrow 4M_{1+x}La_{1-x}MnO_4 + 4(1 + x)CO_2$$

est terminée après trois traitements thermiques de 18 hr, le premier à 1000°C et les deux autres à 1400°C. Pour de faibles valeurs de xtous les traitements thermiques ont été effectués sous argon U, pour les taux en ions Mn⁴⁺ les plus élevés le dernier traitement est effectué à l'air.

Analyse

Les proportions respectives en ions Mn^{3+} et Mn^{4+} se déduisent d'une part des variations de poids qui se produisent au cours des réactions, d'autre part de l'analyse chimique.

La totalité des ions manganèse est réduite à l'état Mn^{2+} par un excès d'ions $C_2O_4^{2-}$ en milieu sulfurique 2N. Cet excès est dosé en retour par le permanganate: les résultats concernant quelques valeurs de x pour les solutions solides $M_{1+x}La_{1-x}MnO_4$ sont consignés au Tableau I. Pour le composé du strontium, la mise en solution est de plus en plus difficile lorsque x croît et les dosages n'ont pu être effectués que lorsque $x \ge 0.50$.

TABLEAU I

M_{1+x} La _{1-x} MnO ₄					
M = Sr	$x_{théor}$	0	0,15	0,25	0,40
	$x_{exp} \pm 0.02$	0	0,16	0,25	0,42
M = Ba	$x_{théor}$	0	0,10	0,25	0,40
	$x_{exp} \pm 0.02$	0,02	0,10	0,26	0,42

Etude radiocristallographique des phases $SrLnMnO_4$ et Ba $LnMnO_4$

Toutes les phases $SrLnMnO_4$ et Ba $LnMnO_4$ cristallisent dans le système quadratique. Leurs paramètres sont donnés au Tableau II.

L'indexation des spectres de poudre ne laisse apparaître qu'une seule règle d'existence pour les raies observées: h + k + l = 2n; elle implique l'un des groupes d'espace centré de symétrie quadratique.

L'ensemble de ces résultats confirme que les phases $SrLnMnO_4$ et $BaLnMnO_4$ appartiennent au type structural K_2NiF_4 : les ions Mn^{3+} se placent dans les sites octaédriques, l'absence de raies de surstructure lorsque celles-ci sont susceptibles d'apparaître et le calcul effectué antérieurement pour des phases analogues $SrLnCrO_4$, $SrLnFeO_4$, $SrLnCoO_4$, montre que les ions alcalino-terreux et terre rare ont une distribution statistique dans les sites de coordinence 9 (12–14).

Il est intéressant de comparer (Tableau III) les rapports c/a des phases $SrLnMnO_4$ à ceux des phases homologues $SrLnCrO_4$ et $SrLnFeO_4$ qui comportent des ions 3d de taille très proche de celle de l'ion Mn^{3+} : dans la classification de Shannon et Prewitt les rayons des ions Cr^{3+} , Mn^{3+} et Fe³⁺ sont respectivement de 0,615, 0,65 et 0,645 Å (14, 15).

L'exaltation du rapport c/a pour les composés du strontium contenant le manganèse résulte très certainement d'un effet Jahn-Teller lié à une élongation des sites octaédriques oxygénés parallèlement à l'axe Oz: la configuration électronique des ions Mn³⁺ est vraisemblablement $t_{2x}^3 d_{z^2}^3$.

D'une manière générale dans les phases de type K_2NiF_4 , lorsqu'on substitue en sites de coordinence 9 un ion donné par un autre plus volumineux, toutes choses restant égales par ailleurs, on observe une augmentation du rapport c/a. La comparaison des paramètres cristallographiques des phases $SrLnMnO_4$ et $BaLnMnO_4$ conduit à un résultat inverse, qui ne peut s'expliquer que par une différence de la configuration électronique des ions Mn³⁺ dans

MLnMnO ₄	a ± 0,005 Å	c ± 0,01 Å	$c/a \pm 0,006$	V ± 0,6 Å ³
SrLaMnO.	3,804	13,10	3,445	189,6
SrNdMnO.	3,768	12,98	3,445	184,3
SrSmMnO,	3,767	12.92	3,429	183,3
SrGdMnO	3,754	12,87	3,428	181,4
BaLaMnO.	3,907	13.27	3,397	202.7
BaNdMnO.	3,871	13,15	3,397	197,1

TABLEAU II

TABLEAU III

	c/a		c/a		c/a
SrLaCrO₄	3,25	SrLaMnO₄	3,445	SrLaFeO₄	3,290
SrNdCrO ₄	3,224	SrNdMnO ₄	3,445	SrNdFeO	3,275
SrSmCrO	3,213	SrSmMnO	3,429	SrSmFeO	3,245
SrGdCrO	3,207	SrGdMnO₄	3,428	SrGdFeO ₄	3,258

ces deux familles de composés. Le problème sera abordé par une étude magnétique ultérieure.

Etude radiocristallographique des solutions solides $Sr_{1+x}La_{1-x}MnO_4$ et $Ba_{1+x}La_{1-x}MnO_4$

L'introduction dans le réseau cristallin des phases $MLaMnO_4$ (M = Sr, Ba) d'ions Mn^{4+} Ces phases Tableaux IV et

grâce à la substitution couplée: $La^{3+} + Mn^{3+} = M^{2+} + Mn^{4+}$ entraîne la formation d'une solution solide continue $M_{1+x}La_{1-x}MnO_4$ (M = Sr, Ba) dont le domaine d'existence correspond à $0 \le x \le 1$ pour le strontium et à $0 \le x \le 0.50$ pour le baryum.

Ces phases cristallisent avec la symétrie quadratique avec les données consignées aux Tableaux IV et V.

$\operatorname{Sr}_{1+x}\operatorname{La}_{1-x}\operatorname{MnO}_4$							
x ± 0,02	a ± 0,005 Å	$c \pm 0,01$ Å	<i>c/a</i> ± 0,006	V ± 0,6 Å			
0	3,804	13,10	3,444	189,6			
0,15	3,840	12,77	3,327	188,3			
0,25	3,857	12,63	3,276	187,9			
0,40	3,862	12,48	3,233	186,2			
0,50	3,861	12,44	3,222	185,6			
0,75	3,831	12,44	3,247	182,0			
1,00	3,780	12,44	3,291	177,7			
		TABLEAU V					
	1	$Ba_{1+x}La_{1-x}MnC$) ₄				
x	a ± 0,005 Å	c ± 0,01 Å	c/a ± 0,006 Å	V ± 0,6 Å			
0	3,907	13,27	3,397	202,7			
0,10	3,919	13,13	3,351	202,2			
0,25	3,937	13,02	3,319	201,8			
0,40	3,951	13,01	3,293	203,0			
0,50	3,952	12,98	3,285	202,7			

TABLEAU IV

FIG. 1. Variation des paramètres a et c de la phase $Sr_{1+x}La_{1-x}MnO_4$.

Les Figs. 1–6 représentent l'évolution des paramètres a et c, du rapport c/a et du volume élémentaire en fonction du taux d'ions Mn⁴⁺ présent.

Pour la solution solide $\operatorname{Sr}_{1+x}\operatorname{La}_{1-x}\operatorname{MnO}_4 a$ passe par un maximum pour $x \simeq 0,45$. En revanche c diminue très rapidement pour x < 0,45, puis reste sensiblement constant. Corrélativement le rapport c/a comporte un minimum pour $x \simeq 0,45$ et le volume élémentaire décroît régulièrement lorsque x passe de 0 à 1.

Tant que le taux en ions Mn^{3+} est important l'évolution des paramètres implique une configuration de l'ion Mn^{3+} de type $t_{2s}^3 d_z^{1-}$.

En revanche pour de plus faibles taux en Mn^{3+} les variations relatives de *a* et de *c* semblent indiquer qu'il n'y a plus pour les ions Mn^{3+} de configuration électronique privilégiée susceptible d'entraîner un effet coopératif.

FIG. 3. Variation du volume élémentaire en fonction de x pour la phase $Sr_{1+x}La_{1-x}MnO_4$.

FIG. 4. Variation des paramètres a et c de la phase $Ba_{1+x}La_{1-x}MnO_4$.

FIG. 5. Variation du rapport c/a en fonction du taux en Mn⁴⁺ pour la phase Ba_{1+x}La_{1-x}MnO₄.

FIG. 6. Variation du volume élémentaire de la phase $Ba_{1+x}La_{1-x}MnO_4$ en fonction du taux en Mn^{4+} .

Pour la solution solide $Ba_{1+x}La_{1-x}MnO_4$ le rapport c/a diminue quand augmente le taux en ions Mn^{4+} mais cette décroissance est beaucoup plus modérée que celle observée pour le strontium: les ions Mn^{4+} introduisent une moindre perturbation structurale.

Les configurations électroniques des ions Mn^{3+} ne pourront être déterminées qu'à partir des valeurs des intégrales d'échange intraplanaires: cette étude est actuellement en cours.

Bibliographie

- 1. E. O. WOLLAN ET W. C. KOEHLER, Phys. Rev. 100, 545 (1955).
- 2. A. WOLD ET R. ARNOTT, J. Phys. Chem. Solids 9, 176 (1959).
- 3. G. H. JONKER ET J. H. VANSANTEN, *Physica* 16, 337 (1950).

- 4. G. H. JONKER, Physica 22, 707 (1956).
- 5. W. C. KOEHLER ET E. O. WOLLAN, J. Phys. Chem. Solids 2, 100 (1957).
- 6. J. B. GOODENOUGH, Phys. Rev. 100, 564 (1955).
- 7. A. DAOUDI ET G. LE FLEM, J. Solid State Chem. 5, 57 (1972).
- 8. C. CHAUMONT, A. DAOUDI, G. LE FLEM, ET P. HAGENMULLER, J. Solid State Chem. 14, 335 (1975).
- 9. G. BLASSE, J. Inorg. Nucl. Chem. 27, 2683 (1965).
- E. LEGRAND ET M. VERSCHUEREN, J. Phys. (Paris) 25, 578 (1964).
- 11. E. W. GORTER, J. Appl. Phys. 34, 1253 (1963).
- 12. J. P. OUDALOV, A. DAOUDI, J. C. JOUBERT, G. LE FLEM, ET P. HAGENMULLER, Bull. Soc. Chim. Fr. 10, 3408 (1970).
- 13. G. DEMAZEAU, P. COURBIN, I. G. MAIN, ET G. LE FLEM, C.R. Acad. Sci. C 283, 283 (1976).
- 14. J. C. JOUBERT, A. COLLOMB, D. ELMALEH, G. LE FLEM, A. DAOUDI, ET G. OLLIVIER, J. Solid State Chem. 2, 343 (1970).
- 15. R. D. SHANNON ET C. T. PREWITT, Acta Crystallogr. B, 925 (1969).